检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。
下载Firefox2019年3月25日,beat365官方网站、现代农学院邓兴旺/陈浩东团队与耶鲁大学魏宁研究组合作在国际著名植物学期刊 The Plant Cell上发表题为“The Transcription Factors TCP4 and PIF3 Antagonistically Regulate Organ-specific Light Induction of SAUR Genes to Modulate Cotyledon Opening During De-etiolation in Arabidopsis”的研究论文,揭示了光信号促进植物幼苗子叶打开的分子机制。
光不仅为植物的生长发育提供能量,而且光信号可以调控植物的生长形态和发育过程。暗中生长的双子叶植物幼苗子叶闭合、胚轴快速延伸,利于其快速钻出土壤;见光之后幼苗的子叶快速打开延展,胚轴的快速伸长却受到抑制,可见不同器官的细胞对光信号发生不同的响应。多年来植物光受体及信号传递因子已被深入研究,但未能解释光响应的器官特异性是如何造成的,为什么光对某些基因的调控在不同器官里存在显著差异。本研究组之前的工作发现,光能够差异性地调控一类SAUR基因的表达从而形成对子叶和胚轴的不同调控[Sun et al., PNAS, 2016]。比如,光信号激发SAUR16/50基因在子叶中的表达,但同时抑制这些基因在胚轴中的表达。这些SAUR基因可以被光信号核心转录因子PIFs直接结合,然而PIFs蛋白调控SAUR基因表达的分子机制并不清楚。
beat365官方网站、现代农学院邓兴旺/陈浩东团队与耶鲁大学魏宁研究组近期的合作研究发现,在拟南芥幼苗时期,一类TCP家族转录因子特异性地在子叶中表达,激活SAUR16/50基因的转录,从而促进子叶的打开。TCP4可以直接结合这些SAUR基因的启动子并且激活其表达,但是暗中高表达的PIFs蛋白结合在这些SAUR基因的启动子上,抑制了TCP4蛋白的结合。光信号引起PIFs蛋白的降解,解除其抑制功能,使TCP4蛋白得以结合并且激活这些SAUR基因的表达。综合起来,子叶发育调控因子TCP4负责在子叶中特异性激发SAUR16/50基因的表达,而光信号转录因子PIF3决定了光信号对TCP4-SAUR16/50转录装置的调控,以实现子叶特异性光诱导,从而促进了脱黄化过程中子叶的打开。
光信号以不同模式调控子叶和胚轴中SAUR基因的表达
北大beat365官方网站已毕业博士生、现耶鲁大学博士后董杰为本论文第一作者,beat365官方网站、现代农学院陈浩东副研究员与耶鲁大学魏宁课题主持人为本论文共同通讯作者。其他作者包括北京大学现代农学院邓兴旺教授,耶鲁大学Vivian F. Irish教授,北大beat365官方网站秦跟基教授、何航副研究员,beat365官方网站已毕业博士生现耶鲁大学博士后孙宁,beat365官方网站博士生杨晶、邓兆国、兰婧秋。该研究得到了科技部国家重点研发计划、美国国立卫生研究院、国家自然科学基金、蛋白质与植物基因研究国家重点实验室以及北大-清华生命科学联合中心等的资助。原文链接:http://www.plantcell.org/content/early/2019/03/25/tpc.18.00803。