Home / RESEARCH / News RESEARCH

Mitochondrial base editor induces substantial nuclear off-target mutations

May.14,2022

Prof. Chengqi Yi published a paper in Nature.


DddA-derived cytosine base editors (DdCBEs), which are fusions of the split-DddA halves and transcription activator-like effector (TALE) array proteins, enable targeted C·G-to- T·A conversions in mitochondrial DNA. However, its genome-wide specificity is poorly understood. Here we show that the mitochondrial base editor induces extensive off-target editing in the nuclear genome. Genome-wide, unbiased analysis of its editome reveals hundreds of off-target sites that are TALE array sequence (TAS)-dependent or -independent. TAS-dependent off-target sites in the nuclear DNA (nDNA) are often specified by only one of the two TALE repeats, challenging the principle that DdCBEs are guided by a paired TALE proteins positioned in close proximity. TAS-independent nDNA off-target sites are frequently shared among DdCBEs with distinct TALE arrays. Notably, they co-localize strongly with CTCF-binding sites and are enriched in TAD boundaries. We also engineered DdCBE to alleviate such off-target effect. Collectively, our results have implications for the use of DdCBEs in basic research and therapeutic applications, and suggest the need to thoroughly define and evaluate the off-target effects of base editing tools.


Original link: https://www.nature.com/articles/s41586-022-04836-5.