Home / RESEARCH / News RESEARCH

Identifying complex motifs in massive omics data with a variable-convolutional layer in deep neural network

Jul.07,2021

Dr. Ge Gao published a paper in Brief. Bioinformatics.


Motif identification is among the most common and essential computational tasks for bioinformatics and genomics. Here we proposed a novel convolutional layer for deep neural network, named variable convolutional (vConv) layer, for effective motif identification in high-throughput omics data by learning kernel length from data adaptively. Empirical evaluations on DNA-protein binding and DNase footprinting cases well demonstrated that vConv-based networks have superior performance to their convolutional counterparts regardless of model complexity. Meanwhile, vConv could be readily integrated into multi-layer neural networks as an ‘in-place replacement’ of canonical convolutional layer. All source codes are freely available on GitHub for academic usage.


Original link: https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbab233/6312656?guestAccessKey=e0928da2-3daa-4c27-91d1-e03eb5a12436